THE DISTRIBUTION FUNCTION OF ATOMIC LEVEL
POPULATIONS IN A PLASMA
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An analytic form is obtained for the population distribution function in an atomic plasma as

a series in successive time derivatives of the population of the first level. The first approx-
imation includes the well-known method of a stationary sink. The quasistationary distribu-
tion obtained for hydrogen agrees well with numerical calculations of recombination and
ionization, and for lithium, helium, and argon the quasistationary distribution gives qualita-
tive agreement with numerical calculations.

The determination of the population distribution function of the discrete levels in an atomic plasma is
of great importance in problems of ionization, recombination, and emission of plasmas and also the design
and optimization of atomic-level lasers. Its role has been especially emphasized by the restlts of molecu-
lar kinetics, in which quasistationary distributions over the vibrational levels of molecules have recently
been obtained. These are the Treanor distribution [1] and various generalizations thereof. The simple
analytic form of such distributions had made it possible to establish a number of new laws in vibrational
kinetics and has been widely used in laser theory [2-4].

In atomic kinetics the situation is more complicated. Here there are two approaches. One of them
is based on a numerical solution of the balance equations for the populations. Very frequently, one has
used a numerical solution of the simplified equations in the approximation of "stationary sink" (see, for
example, [5-8]).

In the other approach [9-12], the motion of an electron between levels is treated as a stochastic pro-
cess like Brownian motion in the energy space, the motion being described by the Fokker—Planck equation.
In [11, 12], the authors used the modified diffusion approximation of the Fokker—Planck equation in finite
differences and were able to preserve the real discrete structure of the energy spectrum. While the first
approach is inconvenient because it is so cumbersome, the second, although entirely satisfactory for upper
levels, is not accurate for the lower levels.

In the present paper we propose an analytic solution of the kinetic relaxation equations of a hydrogen
plasma and, under certain simplifying assumptions, any atomic plasma. This solution is based on an ex~
pansion of the distribution in a series in the time derivatives of the population of the first level. In prin-
ciple, any approximation can be calculated analytically, but in the majority of the cases of practical interest
the first approximation is sufficient. The corresponding quasistationary distribution has, in some funda-
mental features, similarities with the Treanor distribution for molecules.

1. Method of Analytic Solution of the System

of Kinetic Equations

Let us consider the bases on which we solve the equations of atomic kinetics, taking as an example
the relaxation of a hydrogen plasma. We introduce simplifying assumptions. For the free electrons we
assume a Maxwellian distribution function with constant electron temperature Tg. Of the various elemen-
tary collision processes, we take into account collisions of the first and the second kind of atoms with
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electrons and we ignore the infrequent processes of atom—atom and atom—ion collisions and also ioniza-
tion, radiation, and triple recombination. In addition, the plasma is assumed to be optically thin and spa-
tially homogeneous.

These assumptions enable us to write down the system of equations for the populations of the discrete
levels of a hydrogen plasma without allowance for radiation decay of the levels as follows:

B V(0 Y NN, 4V (041, ) Nasy Ve =V (1, n— D) NNy +V (= 1, 1) Vs N, 1.1)
Here N is the population of the n-th level of the hydrogen atom, Ng is the electron density, and V are
the probabilities of collisions of the first and the second kind of electrons and atoms, averaged over the
electron Maxwellian distribution. After times comparable with the collision time between free electrons,
equilibrium with the continuous spectrum described by the Saha formula is established for the highestlevels:

N, =niN,? <2nh:>=/=exp <;§1‘?,—e> | (n > no) {1.2)

where R is the hydrogen ionization potential. The probabilities V(m, m+ 1) of the inverse processes are
related to the probabilities of the direct processes by the principle of detailed balance:

v (m, 1 1)2 By,
Vi:—‘:l:hm;:(mjﬂ) EXP(— m;’lgm)’ Em+1,'_m=EM+1"Em:- (1.3)

To solve the system (1.1} we make the change of variables

13

={N.@)ar, dv=n,at (1.4)
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Summing the resulting equations from 1 to m, we obtain

V (m, m -+ 1) dN. 1.5)
Ny = Vim+1, m) "‘+V(m—1—1 m) 2 7

The solution of the system (1.5) can be represented in the form

m-—1

- 2 umleav 1.6)

i=0

where the populations Ny are determined by the derivatives of the populations of the first level Nl(l)

ali Ny /d'r(l) and the quantities ozm, which do not depend on 7. Todetermine oz}n,we substitute (1.6) into 1.5):

= Vim—+1, m) -5
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Zam-uNl() (m, m 1) Zam (>+V(m+1m ZZO‘ @ 1.7)
Reversing the order of summation in the second term in accordance with the formula
2222
na=] =] i=1n=i

and equating coefficients of corresponding derivatives, we obtain the recursion relations

i Vim, m+1) i 1 i1
am+1_’V( +1 m) Om +V(m+1 m)nzta (1'8)
which can also be represented as
n m—1
i n? exp(— En, m[T,) -1
@, = mgﬂm————v ey 2 (1.9)
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distribution. The departure from the Boltzmann distribution with tempera~
ture Te that holds for Ni(i) =0,1is= 0, is given by the terms with the first,
L second, etc., derivatives of the population of the ground state of the atoms.
The process of recombination and ionization occurs in such a way that with
the course of time the atoms begins to "forget" their initial conditions. In

Fig. 2 7 other words, the terms with the highest derivatives may be important only

in the initial stage of the process and unimportant at the end. For the time

tail of the relaxation it is sufficient to retain the term with the first derivative; then for the populations
we have :

w;/
7 P The solution (1.6) describes the process of relaxation to a Boltzmann
N

N = 0Ny + 2V, (1.13)

where «y,° is given by (1.10) and ap! by 1.12).

2. Recombination and Ionization of a Hydrogen Plasma

Let us consider the recombination and ionization of a hydrogen plasma at relatively high densities of
the free electrons, when collisional transitions play the main role. The level population distribution can be
conveniently characterized by temperatures g, between neighboring levels, these being determined by

Noww  (n4-1p ( Eppa,n ) 2.1)
N, T m XP({T, )
In the case of recombination of a plasma whose degree of ionization is greater than the equilibrium
value corresponding to the free—electron temperature Te = 0.05-0.5 eV, we obtain, using the expression
(1.13) for the populations,

T 1 1q-1
0, =T, [1 +7——In _t&nl] 2.2)
nin 4B, Y
where
{ exp(E /Ty N
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The parameter w(7) can be represented in the form

0 ()= 47 1) [exp (— 222) — exp— 22 ] (2.3)

Since the population of the lower level increases with the time as a result of recombination, the pa-
rametfer v is positive (this follows directly from its definition), and therefore all the temperatures are
always greater than Tg+ In addition, »(7)—0 and 6;(1) —Te as 7 — «. Thus, the temperature between the
first and the second levels during recombination approaches the electron temperature asymptotically.

We calculated the temperatures 6, for fixed Tg and different values of the parameter §;. The prob-
abilities of collisions of the first and the second kind between atoms and electrons were taken from expres-
sions based on Bethe's formula (see, for example [6]). For Teg = 0.1 eV, the results of the calculation are
represented in Fig. 1 in the form of the dependence of 6, on n for different 6;. It is interesting that when
91 decreases to the value determined by the condition
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the values of the other temperatures remain virtually constant. In the wellknown approximation of a "sta-
tionary sink" [6], the nature of the distribution obtained as a result of numerical calculations is also inde-
pendent of the temperature between the first and the second level and agrees with the analytic solution.

It can be seen from Fig. 1 that, as a result of recombination, equilibrium is established fairly rapidly
between the electrons on the upper levels and the free electrons. There is then an accumulation of the
first level, the distribution in the upper levels remaining essentially unchanged (stationary sink, curve 1).
Further, once the temperature g; approaches equilibrium, there is a decrease in the temperature between
the second and the third level and an accumulation of the second level,while the distribution at the upper
levels remains essentially the same (curves 2 and 3), etc.

Thus, the recombination process can be regarded as a certain successive process of population of
levels, beginning with the first.

Let us consider the problem of ionization of a hydrogen plasma whose degree of ionization at the
initial time is less than the equilibrium value corresponding to the free-electron temperature Te = 5-10 eV.
In contrast to recombination, the parameter w is negative, since the population of the ground state decreases
to a certain equilibrium value. The temperature between the first and the second level increases to the
electron temperature. The populations are described by the previous formula (2.2). The results of the
caleculation for T, =5eV and different values of the parameter 9; are shown in Fig. 2. In accordance with
the distributions obtained, the ionization proceeds fairly rapidly in the initial phase, when the electron
temperature is very different from the temperature between the first and the second level. During this
stage of ionization, many-quantum transitions to the upper levels play an important role. Therefore, curve
1 in Fig. 2 (in which only one-quantum transitions are taken into account) does not turn sufficiently toward
the electron temperature. Once the difference between the electron temperature and the temperature be~
tween the first and the second level becomes insignificant, the populations of the excited states are deter-
mined primarily by the population of the neighboring lower level (stepwise ionization). At the same time,
the temperatures between upper neighboring levels relax successively to the electron temperature. The
nature of the relaxation of the distribution to the equilibrium state during the stage of stepwise ionization
is shown in Fig. 2 by curves 2 and 3.

3. Condition of Applicability of the Quasistationary

Distributions. External Influences on a Relaxing System

The quasistationary distributions were obtained in the one-quantum approximation (we allowed for
only transitions between neighboring levels). This approximation is not satisfied for the upper levels, for
which the Saha distribution (1.2) holds. To obtain a single distribution, we fit the two distributions, using
the normalization relation

A N.=N-—N,
n==1

As a result, we obtain a system of two equations:

IN, + 2N =N —N,, Ny 4B dN,Y = CN 2 ©.1)

where
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. 1
Solving the system for Ny and Nl( ), we can readily relate the parameter w to the electron density:

= o
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Hence we obtain the admissible values of the « for which relaxation processes can be considered.
For recombination

1 [CNE@©  \._ 1 CNZ2()
»<pr (T 1)~51 Fo
For ionization

1 CNZO)__ 1
|“|<BZ.T(1’—N1(0) )

=B
Since the temperature gy relaxes to Tg, it follows that w—0, and the electron density tends to a cer-
tain limit determined by the equation

N—N,—ZCN} =0, N, =g [VTT4ZCN —1)

In the case of recombination

N~V 5.2)

In the case of ionization

N,— N (1 — ZCN) ®.3)

Note that the same limit can be obtained from the exact solution of the system (3.1) as 7— .

Differentiating the system (3.1) with respect to T and solving it for Nl(l) and NI(Z), we obtain the condi-
tion under which the next term in the expansion in the derivatives can be ignored:

NP 270N, -1 <°ﬁ
M@ JZCN, T B, Sa.F

In the case of recombination with Tg = 0.05-0.5 eV, this inequality can be simplified, since
o, L
Z=1, L'~ Tr=V(2,1)
T

As a result

N, <<V (2,1)8,'/2C 3.4)
For the case of ionization, the condition under which the second derivatives can bekignored is trans-
formed to

1B <€ ©:5)

While the inequalify (3.4) enables one to find the times after which the time tail of the recombination
is well described by the first derivative, the inequality (3.5) gives a lower bound for the electron tempera~
ture. When Te = 5 eV, this inequality is satisfied with one or two orders of magnitude to spare. Note that
in the calculations we have throughout assumed ny = 9. However, the higher values of n; had practically
no influence on either the nature of the distribution nor the fulfillment of the conditions (3.4) and (3.5).

Thus, our distributions describe a fairly broad class of phenomena. This also applies to the distribution
that takes into account only the first derivative, which, like Treanor's distribution for the vibrational levels
of molecules, depends on the two parameters Te and §;. The electron temperature Ty characterizes both
the external condition and the level distribution functions. The temperature 6, for given Tg characterizes
the internal properties of the distribution. Without dwelling on questions of an external influence on a re-
laxing system, we point out only the obvious simplicity of the treatment of relaxation in varying external
conditions for characteristic times of variation greater than the time required to establish a guasiequilib-
rium distribution.
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4. Allowance for Radiative Decay of Levels

Hitherto we have considered a relatively- dense plasma in which collisional transitions predominate.
In a plasma with a low electron density, radiative decay of the levels also influences the population kinetics
of the excited states in addition to collisions of the first and the second kind between atoms and electrons.
Let A(n, m) be the probability of a spontaneous radiative transition from level n to level m. Then the radi-
ative flux from level n to all the lower levels is

n—1

— DA, m)N,=—A(m)N,, A(1)=0 @.1)

m=1

In the flux from the upper levels to level n we restrict ourselves to spontaneous transitions between
levels n+1 and n. As a result, the kinetic equations acquire two further terms, which greatly complicate
the problem, since the electron density depends on the time. However, in the case of a "stationary sink,"
when Ny remains virtually constant, or in the quasistationary case when N varies slowly compared with
the change of the populations of the discrete levels, radiative decay can be included in the general scheme
of solution of system (1.1), and one can obtain the corrections to the coefficients for arbitrary a,l, which
are calculated from the recursion relation

A(m 41, m) i (m 1) Em 1,m\ i i m -1
[“ Tv;‘v'(‘m]“mﬂ“ m? exp(— T, )“m+m§f" -

D 1A@m) — An, n—1)] o}

1
N ———
NeV(m+1,m) s 4.2)

The recursion relation comes out particularly simply for the coefficients ozgiﬂ:

antt =11 W(i+1,i)]", W(m 41, m)=V(m+1, m Amtlm 4.3)

N
i=1 e

Then the formula for the temperatures becomes

(4.4)

_ _ 1 e’ ta ik
0 = Bun 2 In [ 50 o |

5
1
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where

E E
%= 4W 2 1) [oxp (— 1) — G ex (—3Y)]

If the radiative correction is small,
Am+1, m)/Vim+1, m<LN,
Eq. (4.4) can be readily transformed to the old expression by the substitution

Vim-+1, m)—>W(in+1,m

If the electron density varies rapidly, radiative decay can be taken into account by the method of
successive approximation, in which in the first step one must assume that Ng depends on the time in these
formulas.

5. Relaxation of the Populations in an Atomic Plasma

In contrast to hydrogen, the structure of the discrete levels of arbitrary atoms is fairly complicated.
For example, in the case of the lithium atom the level with the principal quantum number n is split into
sublevels with different values of the orbital number /.

The balance equations that take into account inelastic collisions between atoms and electrons are
an, ! 1y
8l — NNy 2 V@l wly+ D V'l nl) NurN, (5.1)

dt
n’I’'s=nl nlnd
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Since the probabilities of {ransitions between neighboring levels increase with decreasing distance
between them, equilibrium is established most rapidly at the lower levels. Introducing the assumption of
a Boltzmann distribution over / =s, p, d, .. .:

AE
Noi = Npo (20 4 1) exp [— 758(") J . AE,(n)j= Eny — E., (5.2)

and taking into account the transitions An =0, +1, Al =+ 1, we go over in (5.1) to the variable T:

dN

AE 1
d:s = —V(ns,n+1p) Ny, +V(n 4+ 1p, ns) 3exp (,—A ___p_:(;_‘i'_)) Npis +
AE —1
+V(n—1p, ns)3exp (— —’;,—'-'——)—) Nyyp— V (ns, n— 1p) N, 5.3)
]

These equations are similar to (1.1) for the hydrogen atom; however, here, because of the branching
of the flux, the coefficients of the populations (regarded as effective probabilities) are no longer related by
an equation of the type (1.3) for the direct and inverse processes. As in the case of hydrogen, a solution is
sought in the form of the series

Ne—=2 .
Npo = D 0 Nas” (5.4)

i=0

As a result, we obtain recursion relations for ay!, from which we obtain

E_ ,(s) Y
“m°=exp<“—m—f:‘(—sl“): En a(s)=Enps — By, (m=3,4...)

e

—1 n n
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The parameter that determines the recombination and ionization kinetics is in this case the tempera-
ture 9,(s) between the levels 2s and 3p:

w= 2 =7 (25,39 030 (B0 — 57)) 1] 6.6

Finally, we write down expressions for the populations of the discrete levels and the temperature be-
tween the levels (n+1)s and np:

E AE
Npy = Ny (20 + 1) exp [ _ _n_z_ﬂTi_zﬂJ (4 + B, G.7)
E —AE 1 L
0,7 () = [Bnia, n () — ABp ()1 | 2220 = 2000 g 2 Bort ] (5.8)

Because of the branching of the relaxation flux it is possible for population inversion to arise between
levels (n+1)s and np during the recombination of the plasma if

148, E, .. .(s)—AE_(n)
TrRh > o | = -9

This condition is especially simple for the transition 3s—2p:

By a0
92 (.S‘) > AE: (2) 1 e (5 -1 0)
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The results of calculations of the populations in Li in accordance with these formulas is in good
agreement with the numerical calculations [13] for relaxation in a dense lithium plasma and also in quali-
tative agreement with the results of [14] for the helium atom and [15] for the argon atom. Evidently, this
approach can be used to calculate the populations of discrete levels of all atoms, and also to produce popu-
lation inversion under different nonequilibrium regimes.

We should like to thank B. F. Gordiets for a helpful discussion.
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