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An analytic form is obtained for the population distr ibution function in an atomic plasma as 
a ser ies  in success ive  time derivatives of the population of the f i rs t  level. The f i r s t  approx- 
imation includes the well-known method of a s ta t ionary sink. The quasis ta t ionary distr ibu- 
tion obtained for hydrogen agrees  well with numerica l  calculations os recombination and 
ionization, and for lithium, helium, and argon the quasis ta t ionary distribution gives qualita- 
tive agreement  with numerica l  calculations.  

The determination of the population distr ibution function of the discrete  levels in an atomic plasma is 
of grea t  importance in problems of ionization, recombinat ion,  and emiss ion  of plasmas and also the design 
and optimization of atomic-level l a se r s .  Its role has been especial ly emt~hasized by the resul ts  of molecu- 
l a r  kinetics,  in which quasis ta t ionary distributions over  the vibrational levels of molecules have recent ly  
been obtained. These are the Treanor  distribution [1] and various general izat ions thereof.  ~lhe simple 
analytic form of such distributions had made it possible to establish a number of new laws in vibrational 
kinetics and has been widely used in laser  theory [2-4]. 

In atomic kinetics the situation is more complicated.  Here there are two approaches.  One of them 
is based on a numerica l  solution of the balance equations for the populations. Very frequently, one has 
used a numer ica l  solution of the simplified equations in the approximation of "stat ionary sink" (see, for 
example, [5-8]). 

In the other approach [9-12], the motion of an e lectron between levels is t reated as a s tochast ic  p r o -  
cess like Brownian motion in the energy space,  the motion being descr ibed by the Fokke r -P l anck  equation. 
In [11, 12], the authors used the modified diffusion approximation of the Fokke r -P lanck  equation in finite 
differences and were able to preserve  the rea l  d iscrete  s t ruc ture  of the energy spect rum.  While the f i r s t  
approach is inconvenient because it is so cumbersome,  the second, although entirely sa t i s fac tory  for upper 
levels, is not accurate  for the lower levels.  

In the present  paper we propose an analytic solution of the kinetic relaxation equations of a hydrogen 
plasma and, under cer ta in  simplifying assumptions,  any atomic plasma. This solution is based on an ex- 
pansion of the distribution in a ser ies  in the time derivat ives of the population of the f i r s t  level. In prin- 
ciple, any approximation can be calculated analytically,  but in the majori ty  of the cases  of pract ical  in te res t  
the f i rs t  approximation is sufficient. The corresponding quasis ta t ionary distribution has ,  in some funda- 
mental features ,  s imilar i t ies  with the Treanor  distribution for molecules.  

1 .  M e t h o d  o f  A n a l y t i c  S o l u t i o n  o f  t h e  S y s t e m  

o f  K i n e t i c  E q u a t i o n s  

Let us consider  the bases  on which we solve the equations of atomic kinetics,  taking as an example 
the relaxation of a hydrogen plasma.  We introduce simplifying assumptions.  For  the free electrons we 
assume a Maxwellian distribution function with constant e lect ron tempera ture  T e. Of the various elemen- 
tary  collision p rocesses ,  we take into account collisions of the f i rs t  and the second kind of atoms with 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 18-26, 
July-August, 1972. Original article submitted February 7, 1972. 

�9 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any farm or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A 
copy of this article is available from the publisher for $15.00. 

446 



e l e c t r o n s  and  we i g n o r e  the i n f r e q u e n t  p r o c e s s e s  of a t o m - - a t o m  and a t o m - i o n  c o l l i s i o n s  and a l so  i o n i z a -  
t ion ,  r a d i a t i o n ,  and t r i p l e  r e c o m b i n a t i o n .  In add i t ion ,  the p l a s m a  i s  a s s u m e d  to be  o p t i c a l l y  th in  and s p a -  

t i a l l y  h o m o g e n e o u s .  

T h e s e  a s s u m p t i o n s  e n a b l e  us  to w r i t e  down the s y s t e m  of  equa t ions  fo r  the popu la t ions  of the d i s c r e t e  
l e v e l s  of  a h y d r o g e n  p l a s m a  wi thou t  a l l o w a n c e  fo r  r a d i a t i o n  d e c a y  of the l e v e l s  as  fo l lows :  

dNn V(n,n_4_t)N,~N _}_V(n_4_t,n)N~lNe _ V ( n , n _ t ) N n N ~ + V ( n _ _ l , n ) N ~ _ l N ~  (1.1) 
dt 

H e r e  N n i s  the popu la t i on  of  the n--th l e v e l  of the h y d r o g e n  a t o m ,  N e i s  the e l e c t r o n  d e n s i t y ,  and V a r e  
the  p r o b a b i l i t i e s  of  c o l l i s i o n s  of  the f i r s t  and the s e c o n d  k ind  of e l e c t r o n s  and a t o m s ,  a v e r a g e d  o v e r  the  
e l e c t r o n  M a x w e l l i a n  d i s t r i b u t i o n .  A f t e r  t i m e s  c o m p a r a b l e  wi th  the  c o l l i s i o n  t i m e  b e t w e e n  f r e e  e l e c t r o n s ,  
e q u i l i b r i u m  with the con t inuous  s p e c t r u m  d e s c r i b e d  by  the Saha f o r m u l a  i s  e s t a b l i s h e d  fo r  the h i g h e s t l e v e l s :  

~ ~[2~h2V/, / R \ (1.2) 
N~ = n lye ~7~-U~) exp ~n~-~-~-e) (n > no) 

w h e r e  R i s  the h y d r o g e n  i o n i z a t i o n  p o t e n t i a l .  The p r o b a b i l i t i e s  V(m, m + 1) of the i n v e r s e  p r o c e s s e s  a r e  
r e l a t e d  to the p r o b a b i l i t i e s  of the d i r e c t  p r o c e s s e s  by  the p r i n c i p l e  of d e t a i l e d  b a l a n c e :  

Era+l, m 1 V (m, m + i) _ (m + ip exp - -  ~ / E.,+~ .,~ = E,~+~ - -  E ,~  (1.3) 
V (m + 1, m) m2 ' . . . .  

To solve the system (i.I) we make the change of variables 

t 

= f N, (t') dt', d~ = N~ dt (1.4) 
0 

S u m m i n g  the r e s u l t i n g  equa t i ons  f r o m  1 to m,  we ob ta in  

m 
v ( ~ ,  _ ~ + _ ~  t ~ dN,~ 

N~+l = V (.~ + I, m) " '~  + V (,n • ~, m) ~__l--~- 

The s o l u t i o n  of the s y s t e m  (1.5) can  be  r e p r e s e n t e d  in the f o r m  

( i  . 5 )  

m - - I  

N~ = ~', u.,~"~vl(0 (1.6) 

(0 w h e r e  the popu la t i ons  Nm a r e  d e t e r m i n e d  b y  the d e r i v a t i v e s  of  the popu la t i ons  of  the f i r s t  l eve l  N~ = 
d (i) N~/dT (i) and the q u a n t i t i e s  C~im, which  do no t  d e p e n d  on ~-. To d e t e r m i n e  Ceim, we s u b s t i t u t e  (1.6) into (1.5)" 

m rn 
�9 �9 V ( m , m + O  �9 ' t y , ~ a { 1 N ( O  

~, a~;~ N~ ~ = v (m ~- i, m) ~ '  am*N~O) ~ ~ (m § i, m) ~=~ i=~ 

R e v e r s i n g  the o r d e r  of s u m m a t i o n  in  the s e c o n d  t e r m  in  a c c o r d a n c e  with the f o r m u l a  

(1.7) 

~n Tt Fn 

n = l  {=1 i ~ 1  n ~ i  

and equa t ing  c o e f f i c i e n t s  of  c o r r e s p o n d i n g  d e r i v a t i v e s ,  we ob t a in  S e  r e c u r s i o n  r e l a t i o n s  

{ V Qn ,  m 4 -  1) i ~ i  " (i .s) 

which  can  a l s o  be  r e p r e s e n t e d  a s  

�9 n~ exp (-- En, m / Te) a~-i % ' =  ~' ~ v(~,~-,) ~' 
rn=/Jt-1 k=i 

(i .9) 
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Hence, 

am ~ = m ~ exp (-- Era, 1 / Te) (1 .10)  

m -1 
(1.11) 

an i n 2 exp(--En, miTe) 
: - ~  V (m, m -- i) ~' k~ exp -- 

m~2 n~l 

(1.12) 

The solution (1.6) descr ibes  the process  of relaxation to a Boltzmann 
distribution. The departure f rom the Boltzmann distribution with tempera-  
ture Te that holds for NI (i) = 0, i ~ 0, is given by the t e rms  with the f i rs t ,  
second,  etc. ,  derivatives of the population of the ground state of the a toms.  
The process  of recombination and ionization occurs  in such a way that with 
the course  of time the atoms begins to "forget" their  initial conditions. In 
other words,  the t e rms  with the highest  derivatives may be important  only 
in the initial stage of the process  and unimportant  at  the end. For the time 

tail of the relaxation it is sufficient to retain the t e r m  with the f i r s t  derivative; then for the populations 
we have 

N,n = a,n~ + a,nl N,n (1) (1.13) 

where ~m ~ is given by (1.10) and ~m 1 by (1.12). 

2 .  R e c o m b i n a t i o n  a n d  I o n i z a t i o n  o f  a H y d r o g e n  P l a s m a  

Let us consider  the recombination and ionization of a hydrogen plasma at relat ively high densities of 
the free e lec t rons ,  when collisional t ransi t ions play the main role.  The level population distribution can be 
conveniently charac te r ized  by tempera tures  On between neighboring levels ,  these being determined by 

E \ N,,+z (2.1) 
- -  n-V--- exp 

N n  \ On / 

In the case of recombination of a plasma whose degree of ionization is g r ea t e r  than the equil ibrium 
value corresponding to the f r ee -e l ec t ron  tempera ture  Te = 0.05-0.5 eV, we obtain, using the express ion 
(1.13) for the populations, 

T e , i -~-U~al ] - 1  
0 .  = T~ i + w - - - - - m  ( !  (2 .2)  

where 

: : ra*V(m,m--t)  ' u =  N1 

The pa ramete r  x(~-) can be represented  in the form 

• = 4V (2,1)[exp (--G'-G~ ) --  exp(---~;/jGa ~] (2.3) 

Since the population of the lower level increases  with the time as a resu l t  of recombinat ion,  the pa- 
r a m e t e r  x is positive (this follows direct ly  f rom its definition), and therefore  all the t empera tu res  are  
always g rea t e r  than T e. In addition, ~(T)~0 and 01(T) ~ T e  as r ~ ~. Thus, the tempera ture  between the 
f i rs t  and the second levels during recombinat ion approaches the e lec t ron tempera ture  asymptot ical ly .  

We calculated the t empera tures  0 n for fixed T e and different values of the pa rame te r  01- The p rob -  
abilities of collisions of the f i rs t  and the second kind between atoms and e lect rons  were taken f rom expres-  
sions based on Bethe 's  formula (see, for example [6]). For  Te = 0.1 eV, the resul ts  of the calculation are  
represented  in Fig. 1 in the form of the dependence of 0 n on n for different 01. It is interest ing that when 
01 dec reases  to the value determined by the condition 
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[ E2,1 ),>~, exp (01 < 0.102 eV) e x P , - - 0 7  \ T~ ] 

the values of the other t empera tu res  r emain  vir tually constant.  In the well-known approximation of a "sta- 
t ionary sink" [6], the nature of the distr ibution obtained as a resul t  of numerical  calculations is also inde- 
pendent of the tempera ture  between the f i r s t  and the second level and agrees  with the analytic solution. 

It can be seen f rom Fig. 1 that, as a resul t  of recombination,  equil ibrium is established fair ly rapidly 
between the electrons on the upper levels and the free e lec t rons .  There is then an accumulat ion of the 
f i rs t  level, the distr ibution in the upper levels remaining essent ia l ly  unchanged (stationary sink, curve 1). 
Fur ther ,  once the tempera ture  01 approaches  equilibrium, there is a decrease  in the tempera ture  between 
the second and the th i rd  level and an accumulat ion of the secondlevel ,whi le  the distribution at the upper 
levels remains  essent ia l ly  the same (curves 2 and 3), etc. 

Thus, the recombinat ion process  can be regarded as a cer ta in  success ive  process  of population of 
levels,  beginning with the f i rs t .  

Let  us consider  the problem of ionization of a hydrogen plasma whose degree of ionization at the 
initial t ime is less than the equil ibrium value corresponding to the f r ee -e l ec t ron  tempera ture  Te = 5-10 eV. 
In cont ras t  to recombinat ion,  the pa rame te r  u is negative, since the population of the ground state decreases  
to a cer ta in  equil ibrium value. The tempera ture  between the f i rs t  and the second level increases  to the 
e lectron tempera ture .  The populations are  descr ibed by the previous formula (2.2). The resul ts  of the 
calculation for  T e = 5 eV and different values of the pa rame te r  01 are  shown in Fig. 2. In accordance  with 
the distributions obtained, the ionization proceeds fair ly rapidly in the initial phase, when the e lectron 
tempera ture  is very  different f rom the tempera ture  between the f i rs t  and the second level. During this 
stage of ionization, many-quantum transi t ions to the upper levels play an important  role.  Therefore ,  curve 
1 in Fig. 2 (in which only one-quantum transi t ions are taken into account) does not turn sufficiently toward 
the e lec t ron tempera ture .  Once the difference between the e lec t ron tempera ture  and the tempera ture  be- 
tween the f i r s t  and the second level becomes  insignificant, the populations of the excited states are  deter -  
mined p r imar i ly  by the population of the neighboring lower level (stepwise ionization). At the same t ime, 
the t empera tu res  between upper neighboring levels re lax success ive ly  to the e lec t ron tempera ture .  The 
nature of the relaxation of the distr ibution to the equil ibrium state during the stage of stepwise ionization 
is shown in Fig. 2 by curves  2 and 3. 

3 .  C o n d i t i o n  o f  A p p l i c a b i l i t y  o f  t h e  Q u a s i s t a t i o n a r y  

D i s t r i b u t i o n s .  E x t e r n a l  I n f l u e n c e s  on a R e l a x i n g  S y s t e m  

The quasis ta t ionary distr ibutions were obtained in the one-quantum approximation (we allowed f o r  
only t ransi t ions between neighboring levels).  This approximation is not satisfied for the upper levels,  for 
which the Saha distr ibution (1.2) holds.  To obtain a single distribution, we fit the two distr ibutions,  using 
the normalization relation 

7to 

~, N , ~ = N - - N ,  

As a resul t ,  we obtain a sy s t em of two equations: 

ZN1 + Z1N1 (1) = N -- N~, N1 + ~otNl(') = CN2 (3.t) 

where 

n0 

c = oxv W '  z = E l -  

Zt  ~ E C~nt 
n= l  

Solving the sys tem for N1 and NI 1), we can readi ly relate  the pa rame te r  u to the e lec t ron density: 

X--.--.  N - -  Are - -  Z C N e  ~ 

Z ~ C N e  2 - -  ~n .  ~ ( N  - -  N e )  

I {CNe ~ 

449 



H e n c e  we ob ta in  the a d m i s s i b l e  v a l u e s  of the x fo r  which  r e l a x a t i o n  p r o c e s s e s  can  be c o n s i d e r e d .  
F o r  r e c o m b i n a t i o n  

_•ol (CNe ~ (0) ) t CNe ~ (0) 
• < \ N1 (0) t ~ ~,~ N1 (0) 

For i o n i z a t i o n  

N~(O)'] ~ 

Since the  t e m p e r a t u r e  01 r e l a x e s  to Te ,  i t  fo l lows  tha t  ~ t ~ 0 ,  and  the e l e c t r o n  d e n s i t y  t ends  to a c e r -  
t a i n  l i m i t  d e t e r m i n e d  by  the e q u a t i o n  

t 
N - -  N o  - -  Z C N 2  = O, N .  = ~--~ [Vl + 4 Z C N  - il 

In the c a s e  of  r e c o m b i n a t i o n  

N, -* Y'N-TC (3.2) 

In the c a s e  of i o n i z a t i o n  

N~ --+ N (I -- ZCN) {3.3) 

Note tha t  the  s a m e  l i m i t  can  be  ob t a ined  f r o m  the e x a c t  so lu t i on  of  the  s y s t e m  (3.1) a s  ~ -~  r162 

D i f f e r e n t i a t i n g  the s y s t e m  (3.1) wi th  r e s p e c t  to T and so lv ing  i t  fo r  N~ i) and  Nt 2), we ob ta in  the cond i -  
t ion  u n d e r  which  the next  t e r m  in the e x p a n s i o n  in the d e r i v a t i v e s  can  be i g n o r e d :  

N1 (2) 2ZCNe 4- i no 
Ni(i) -- 2Z1CN. -I- [~no t ~ 

In the c a s e  of r e c o m b i n a t i o n  wi th  T e = 0 .05-0 .5  eV,  th i s  i n e q u a l i t y  can  be s i m p l i f i e d ,  s i n c e  

As a r e s u l t  

Z z i ,  Zl  ~ - - - L -  l %"--~ ~ V (2, i )  
v (2,t) ' an. ~ 

N ~  V (2, i)  .~,~ (3.4) 

F o r  the c a s e  of  i o n i z a t i o n ,  the cond i t ion  u n d e r  which  the s e c o n d  d e r i v a t i v e s  can  be i g n o r e d  i s  t r a n s -  
f o r m e d  to 

i/[~,: ~ a,.1/~,. ~ (3.5) 

Whi le  the i nequa l i t y  (3.4) e n a b l e s  one to f ind the t i m e s  a f t e r  which  the t i m e  t a i l  of  the r e c o m b i n a t i o n  
i s  we l l  d e s c r i b e d  by  the f i r s t  d e r i v a t i v e ,  the i ne qua l i t y  (3.5) g i v e s  a l o w e r  bound fo r  the e l e c t r o n  t e m p e r a -  
t u r e .  When Te = 5 eV, th i s  i n e q u a l i t y  i s  s a t i s f i e d  with one o r  two o r d e r s  of magn i tude  to s p a r e .  Note tha t  
in the c a l c u l a t i o n s  we have  t h roughou t  a s s u m e d  n 0 = 9. H o w e v e r ,  the h i g h e r  v a l u e s  of n o had  p r a c t i c a l l y  
no in f luence  on e i t h e r  the n a t u r e  of the d i s t r i b u t i o n  no r  the f u l f i l l m e n t  of  the  c ond i t i ons  (3.4) and (3.5) o 

Thus ,  o u r  d i s t r i b u t i o n s  des  c r i b e  a f a i r l y  b r o a d  c l a s s  of p h e n o m e n a .  Th is  a l s o  a p p l i e s  to the d i s t r i b u t i o n  
tha t  t a k e s  into a c c o u n t  only  the f i r s t  d e r i v a t i v e ,  which ,  l ike  T r e a n o r ' s  d i s t r i b u t i o n  fo r  the v i b r a t i o n a l  l e v e l s  
of  m o l e c u l e s ,  depends  on the two p a r a m e t e r s  Te and 01- The e l e c t r o n  t e m p e r a t u r e  T e c h a r a c t e r i z e s  both 
the e x t e r n a l  cond i t ion  and the l e v e l  d i s t r i b u t i o n  func t ions .  The t e m p e r a t u r e  0i fo r  g iven  T e c h a r a c t e r i z e s  
the i n t e r n a l  p r o p e r t i e s  of  the d i s t r i b u t i o n .  Without  dwe l l ing  on q u e s t i o n s  of  an  e x t e r n a l  in f luence  on a r e -  
l a x i n g  s y s t e m ,  we po in t  out  only  the obvious  s i m p l i c i t y  of the t r e a t m e n t  of r e l a x a t i o n  in v a r y i n g  e x t e r n a l  
cond i t ions  for  c h a r a c t e r i s t i c  t i m e s  of v a r i a t i o n  g r e a t e r  than  the t i m e  r e q u i r e d  to e s t a b l i s h  a q u a s i e q u i l i b -  
r i u m  d i s t r i b u t i o n .  

450 



4 .  A l l o w a n c e  f o r  R a d i a t i v e  D e c a y  o f  L e v e l s  

Hitherto we have considered a re la t ive ly  dense plasma in which collisional t ransi t ions predominate.  
In a plasma with a low e lec t ron  density,  radiative decay of the levels also influences the population kinetics 
of the excited states in addition to collisions of the f i rs t  and the second kind between atoms and e lect rons .  
Let A(n, m) be the probabili ty of a spontaneous radiative t ransi t ion f rom level n to level m. Then the radi-  
ative flux f rom level n to all the lower levels is 

n - - 1  

- -  ~ ,  A ( n , m )  N ~  -= - -  A (n) N=,  A ( i ) = 0  (4.1)  
v a ~ l  

In the flux f rom the upper levels to level n we r e s t r i c t  ourselves  to spontaneous transi t ions between 
levels  n + 1 and n. As a resul t ,  the kinetic equations acquire two fur ther  t e rms ,  which great ly  complicate 
the problem, since the e lec t ron density depends on the t ime. However,  in the case of a "stat ionary sink," 
when N e remains  vir tual ly constant,  o r  in the quasis ta t ionary case when N e var ies  slowly compared with 
the change of the populations of the d iscre te  levels,  radiative decay can be included in the general  scheme 
of solution of sy s t em (1.1), and one can obtain the cor rec t ions  to the coefficients for a r b i t r a r y  ~m i, which 
a re  calculated f rom the r ecu r s ion  relat ion 

m 
�9 t ( Z : - i  

?It 

t _~.+ [A (n) -- A (n, n -- t)] a,~ i 
+ N  V(m+t,m),~_. 1 (4.2) 

m The recur s ion  relat ion comes out par t icular ly  simply for the coefficients ~m+l:  

am+l= W (i -[- t,  i) W (m ~ l, m) = V (m + l, m) ~ - A (m + l" m) 
' N e 

Then the formula for the t empera tu res  becomes  

(4.3) 

0 -'~ = E~+~-~ln [ (n§ --~.__%~ j 
, ,~ %+~ + %+:~. 

(4.4) 

where 

•  ]E~"~ 

If the radiative co r rec t ion  is smal l ,  

v(2, t) ( E~,l~l 
W(2, t) exp -- Te ]j  

A ( m - 4 - i ,  m ) / V ( m + i ,  m ) ~ N ~  

Eq. (4.4) can be readi ly t r ans fo rmed  to the old express ion by the substitution 

V ( m +  t, m ) - + W ( m +  l ,m) 

If the electron density varies rapidly, radiative decay can be taken into account by the method of 

successive approximation, in which in the first step one must assume that Ne depends on the time in these 

formulas. 

5. Relaxation of the Populations in an Atomic Plasma 

In cont ras t  to hydrogen,  the s t ruc ture  of the discrete  levels of a r b i t r a r y  a toms is fair ly complicated.  
For  example,  in the case of the lithium atom the level with the principal  quantum number n is split  into 
sublevels with different  values of the orbital  number l. 

The balance equations that take into account inelast ic collisions between atoms and e lect rons  are 

dt -- -- NeN"z ~ V (nl, n'l') + ~, V (nT,  nl) N,q, Ne 
n'l'v]=nl n ' l ' ~ e n l  

(5.1) 
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Since the probabili t ies of t ransi t ions between neighboring levels increase  with decreas ing  distance 
between them, equi l ibr ium is establ ished most  rapidly at the lower levels .  Introducing the assumption of 
a Boltzmann distr ibution over  l = s, p, d . . . .  : 

Nn, = Nn~ (2/-b 1) exp [ AE, (n) T ] '  aE,(n)]= En,--En~ (5.2) 

and taking into account the t ransi t ions  An = 0, •  Al = • 1, we go over  in (5.1) to the variable ~-: 

dNns = - -  V(ns ,  n -b tp) N,,~ -k  V ( n  -4" t p ,  ns) 3 exp ( . .  AEp (n -4- i) T, ) N~+,, A" 

-{- V (n --  tp, ns) 3 exp ( - -  nET' (n - -  t),~ N - -  V (ns, n - -  ip) N,~ j ~-1~ (5.3) 

These equations a re  s i m i l a r  to (1.1) for  the hydrogen atom; however ,  here ,  because of the branching 
of the flux, the coefficients of the populations (regarded as effective probabili t ies) a re  no longer  re la ted  by 
an equation of the type (1.3) for  the d i rec t  and inverse p roces ses .  As in the case of hydrogen,  a solution is 
sought in the form of the s e r i e s  

7t..--$ 

i=O 

As a resul t ,  we obtain r eeur s ion  relat ions for  en  1, f rom which we obtain 

(5.4) 

~r~~ = exp ( E,,, ~_ (S) , E,,,. ~ ( s ) = E m ~ - - E n .  (,n= 3, 4,. . .) 

m--1 n 1~ ] 
t [ t  A t- ~ V (qs, q - -  lp) = ~mO~ml 

~mX = ~m~ ~'  V (ns, n -4- tp) V ( q - -  is, qp) 
n~2 k=3 q~k (5.5) 

The pa r ame te r  that de te rmines  the recombinat ion and ionization kinetics is in this case the t empera -  
ture 02(s) between the levels 2s and 3p: 

= ~ V (2s, 3p) 0~ (s) 

Finally, we write down express ions  for  the populations of the d iscre te  levels and the t empera tu re  be- 
tween the levels (n + 1)s and up: 

N~t = N2~ (2/q- t) exp [ - -  E~, 2 (s)~+ hE l (n) ] (I + ~,,~) (5.7) 

O,c'(sp) = [E,~+I. ~ ( s ) -  AE~ (n)] -~ [ E'~+L'~(s)-AEp(n) i -b~,~+~,~ 1 L ~ -- In l + 8.1• J (5.8) 

Because of the branching of the relaxat ion flux it  is possible for  population invers ion to a r i se  between 
levels  (n + 1)s and np during the recombinat ion of the plasma if 

1 + I~,,+~x E,~+I ' ,~ (s) T -  ag2, (n) 
l+13.~x• > e x p [  �9 l (5.9) 

This condition is especia l ly  simple for  the t ransi t ion 3s--2p: 

�9 , -  g~,2(s) o~ ts)~  ~ ro (5.1o) 
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The results of calculations of the populations in Li in accordance with these formulas is in good 
agreement with the numerical calculations [13] for relaxation in a dense lithium plasma and also in quali- 
tative agreement with the results of [14] for the helium atom and [15] for the argon atom. Evidently, this 
approach can be used to calculate the populations of discrete levels of all atoms, and also to produce popu- 
lation inversion under different nonequilibrium regimes. 

We should like to thank B. F. Gordiets for a helpful discussion. 
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